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ABSTRACT

Despite their ubiquity, many password meters provide inaccu-
rate strength estimates. Furthermore, they do not explain to
users what is wrong with their password or how to improve it.
We describe the development and evaluation of a data-driven
password meter that provides accurate strength measurement
and actionable, detailed feedback to users. This meter com-
bines neural networks and numerous advanced heuristics to
score passwords and generate data-driven text feedback about
the user’s password. We describe the meter’s iterative devel-
opment and final design. We detail the security and usability
impact of the meter’s design dimensions, examined through
a 4,509-participant online study. Under the more common
password-composition policy we tested, we found that the
data-driven meter with detailed feedback led users to create
significantly more secure, and no less memorable, passwords
than a meter with only a bar as a strength indicator.
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INTRODUCTION

Password meters are used widely to help users create better
passwords [42], yet they often provide ratings of password
strength that are, at best, only weakly correlated to actual
password strength [10]. Furthermore, current meters provide
minimal feedback to users. They may tell a user that his or
her password is “weak” or “fair” [10,42,51], but they do not
explain what the user is doing wrong in making a password,
nor do they guide the user towards a better password.

In this paper, we describe our development and evaluation
of an open-source password meter that is both more accurate
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at rating the strength of a password than other available me-
ters and provides more useful, actionable feedback to users.
Whereas most previous meters scored passwords using very
basic heuristics [10,42,51], we use the complementary tech-
niques of simulating adversarial guessing using artificial neu-
ral networks [32] and employing advanced heuristics to rate
password strength. Our meter also gives users actionable, data-
driven feedback about how to improve their specific candidate
password. We provide users with up to three ways in which
they could improve their password based on the characteristics
of their specific password. Furthermore, we automatically pro-
pose modifications to the user’s password through judicious
insertions, substitutions, rearrangements, and case changes.

In this paper, we describe our meter and the results of a 4,509-
participant online study of how different design decisions
impacted the security and usability of passwords participants
created. We tested two password-composition policies, three
scoring stringencies, and six different levels of feedback, rang-
ing from no feedback whatsoever to our full-featured meter.

Under the more common password-composition policy we
tested, we found that our data-driven meter with detailed feed-
back led users to create significantly more secure passwords
than a meter with only a bar as a strength indicator, without a
significant impact on any of our memorability metrics. In ad-
dition, most of our participants reported that the text feedback
was informative and helped them create stronger passwords.

RELATED WORK

Users sometimes make predictable passwords [22,30,47] even
for important accounts [13,31]. Many users base passwords
around words and phrases [5, 23,29, 44, 45]. When pass-
words contain uppercase letters, digits, and symbols, they
are often in predictable locations [4]. Keyboard patterns like
“lqaz2wsx” [45] and dates [46] are common in passwords.
Passwords sometimes contain character substitutions, such as
replacing “e” with “3” [26]. Furthermore, users frequently
reuse passwords [9, 14,25,38,47], giving the compromise of
even a single account potentially far-reaching repercussions.
In designing our meter, we strove to help users understand
when their password exhibited these common tendencies.

Three types of interventions attempt to guide users towards
strong passwords. First, password-composition policies dic-
tate characteristics a password must include, such as particular



character classes. While these policies can be effective for
security, users often find complex composition policies unus-
able [2,20,24,28,37,49]. Second, proactive password checking
aims to model a password’s security and only permit users to
select a password the model deems sufficiently strong. For
instance, researchers have proposed using server-side Markov
models to gauge password strength [8]. This approach is inap-
propriate when the password should never be revealed (e.g.,
encrypting a hard drive). It also requires non-trivial configura-
tion and can enable side-channel attacks [35].

Third, services commonly provide password meters to show
estimated password strength. To enable these meters to run
client-side and thus avoid the security pitfalls of a server-side
solution, most meters use basic heuristics, such as estimating
a password’s strength based on its length and the number of
character classes used [42]. These sorts of meters can suc-
cessfully encourage users to create stronger passwords [42],
though perhaps only for higher-value accounts [12]. Unfor-
tunately, these basic heuristics frequently do not reflect the
actual strength of a password [1, 10]. Among prior password
meters based on heuristics, only zxcvbn [50,51] uses advanced
heuristics [10,32]. A key difference from zxcvbn in the design
of both our meter and our experiment is that generating and
testing the impact of feedback to the user is primary for us.

Researchers have tried numerous visual displays of password
strength. Using a bar is most common [42]. However, re-
searchers have studied using large-scale training data to show
users predictions of what they will type next [27]. Others have
investigated a peer-pressure meter that compares the strength
of a user’s password with those of other users [36]. These
alternative visualizations have yet to be widely adopted.

MEASURING PASSWORD STRENGTH IN OUR METER
We move beyond measuring password strength using inaccu-
rate [1, 10] basic heuristics, like counting the number of char-
acters in the password, identifying which character classes
(digits, symbols, lowercase letters, uppercase letters) have
been used, or checking the candidate password against a small
blacklist of very common passwords [10,42]. We do so by
combining two complementary approaches: modeling a princi-
pled password-guessing attack using artificial neural networks
and employing 21 advanced heuristics.

Our first approach relies on recent work that proposed neural
networks for modeling a password-guessing attack [32]. This
approach uses a recurrent neural network to assign probabil-
ities to future characters in a candidate guess based on the
previous characters. In its training phase, the network also
learns various higher-order password features. Using Monte
Carlo methods [11], such an approach can model 10° or more
adversarial guesses in real time entirely on the client side after
transferring less than a megabyte of data to the client [32].

However, neural networks are effectively a black box and pro-
vide minimal human-intelligble transparency for their scoring.
Inspired by the zxcvbn password meter [51], we implemented
21 advanced heuristics for password scoring. These heuris-
tics search for characteristics like the inclusion of common
words and phrases, the use of common character substitutions,

the placement of digits and uppercase letters in common lo-
cations, and the inclusion of keyboard patterns. We scored
30,000 passwords from well-studied data breaches [18,44] by
these advanced heuristics, and we ran a regression compar-
ing these scores to the password’s guessability, as modeled
by CMU’s Password Guessability Service [7]. This service
models four types of guessing attacks and has been found to
be a conservative proxy for an expert attacker [43].

Although advanced heuristics also provide relatively accurate
password-strength estimates, at least for resistance to online
attacks [51], we use them primarily to identify characteristics
of the password that are associated with guessability. For each
heuristic for which the meter identifies a common pattern, we
generate text feedback that explains what is wrong with that
aspect of the password, as well as how to improve it. We
developed the wordings for this feedback iteratively within
our group and through a formative lab study. Chapter 7 of Ur’s
dissertation details the development of this wording, the results
of the formative lab study, and the advanced heuristics [40].

VISUAL DESIGN AND USER EXPERIENCE

In this section, we describe the visual design of our meter.
At a high level, the meter comprises three different screens.
The main screen uses the visual metaphor of a bar to display
the strength of the password, and it also provides detailed,
data-driven feedback about how the user can improve his or
her password. The main screen also contains links to the
two other screens. Users who click “(Why?)” links next to
the feedback about their specific password are taken to the
specific-feedback modal, which gives more detailed feedback.
Users who click the “How to make strong passwords” link
or “(Why?)” links adjacent to feedback about password reuse
are taken to the generic-advice modal, which is a static list of
abstract strategies for creating strong passwords.

Translating Scores to a Visual Bar

Password-strength measurements are normally displayed to
users not as a numerical score, but using a colored bar [10,42].
In creating our meter, we needed to map a password’s scores
from both the neural network and advanced heuristic methods
to the amount of the bar that should be filled. We conserva-
tively calculated logio of the lower of the two estimates for
the number of guesses the password would withstand.

Prior work has shown that most users consider a password
sufficiently strong if only part of the bar is full [42]. Therefore,
we mapped scores to the bar such that one-third of the bar
being filled roughly equates to a candidate password resisting
an online attack, while two-thirds means that the candidate
password would likely resist an offline attack, assuming that a
hash function designed for password storage is used. We tested
three different precise mappings, which we term stringencies.

Main Screen

On the main screen a bar below the password field fills up
and changes color to indicate increasing password strength.
Different from previous meters, our meter also displays data-
driven text feedback about what aspects of the user’s specific
password could be improved.



Create Your Password

Username

Your password could be better.

m Don't use dictionary words (Why?)
Password M Capitalize a letter in the
................ middle

B Move symbols and digits (Why?)
elsewhere in your password

Show Password & Detailed Feedback

Confirm Password See Your Password

With Our Improvements

m How to make strong passwords

Figure 1: The tool’s main screen when the password is hidden.

The meter initially displays text noting which requirements
have, and which have not, been met. Once the user begins to
enter a password, the tool indicates that a particular require-
ment has been met by coloring that requirement’s text green
and displaying a check mark. It denotes unmet requirements by
coloring those requirements red and displaying empty check-
boxes. Until the password meets requirements, the bar is gray.

Colored Bar

Once the password meets the account’s composition require-
ments, we display the bar in color. With increasing password-
strength ratings, the bar progresses from red to orange to
yellow to green. When it is one-third full, the bar is dark
orange. At two-thirds full, it is yellow, soon to be green.

Text Feedback

Whereas the colored bar is typical of password meters [42],
ours is among the first to provide detailed, data-driven feed-
back on how the user can improve his or her specific candidate
password. We designed the fext feedback to be directly ac-
tionable by the user, in addition to being specific to his or her
password. Examples of this feedback include, as appropriate,
exhortations to avoid dictionary words and keyboard patterns,
encouragement to move uppercase letters away from the front
of the password and digits away from the end, and suggestions
for including digits and symbols.

Most feedback comments on specific parts of the password.
Because users likely do not expect their password to be shown
on screen, we designed public and a sensitive variants for all
feedback. Public versions mention only the general class of
characteristic (e.g., “avoid using keyboard patterns”), whereas
sensitive versions also display the problematic portion of the
password (e.g., “avoid using keyboard patterns like adgjl”).
We display the public versions of feedback (Figure 1) when
users are not showing their password on screen, which is the
default behavior. We provide checkboxes with which a user
can “show password & detailed feedback,” at which point we
use the sensitive version (Figure 2).

To avoid overwhelming the user, we show at most three pieces
of feedback at a time. Each of our 21 advanced heuristic
functions returns either one sentence of feedback or the empty

Your password is very easy to guess.

m Don't use dictionary words (Why?)
(password)

m Capitalize a letter in the (Why?)
middle, rather than the first
character

m Consider inserting digits into
the middle, not just at the end

A better choice: My123passwoRzd

How to make strong passwords

Figure 2: A suggested improvement for “Mypassword123,”
with changes in magenta. The suggested improvement and
sensitive feedback appear when users show their password.

string. To choose which feedback to display, we manually
ordered the functions to prioritize those that we found in a for-
mative laboratory study provided the most novel information.

Suggested Improvement

Humans are poor sources of randomness. Because many po-
tential improvements to a password involve making hard-to-
predict modifications, we augmented our text feedback with a
suggested improvement, or concrete modification of the candi-
date password. As shown in Figure 2, a suggested improve-
ment for “Mypassword123” might be “My123passwoRzd.”

We generate this suggested improvement as follows. First,
we take the user’s candidate password and make one of the
following modifications: toggle the case of a random letter
(lowercase to uppercase, or vice versa), insert a random char-
acter in a random position, or substitute a randomly chosen
character for one of theirs. In addition, if all of the password’s
digits or symbols are in a common location (e.g., at the end),
we move them as a group to a random location within the pass-
word. We choose from among this large set of modifications,
rather than just making modifications corresponding to the
specific text feedback the meter displays, to greatly increase
the space of possible modifications. We then verify that this
modification still complies with the composition requirements.

To encourage passwords that we estimate would resist an of-
fline attack, we require that the suggested improvement would
fill at least two-thirds of the bar and also be at least 1.5 orders
of magnitude harder to guess. When we have generated such
a suggested improvement and the user is currently showing
his or her password, we display the suggested modification on
screen with changes in magenta, as in Figure 2. If the user is
not showing his or her password, we instead show a blue but-
ton stating “see your password with our improvements.” Prior
work has investigated automatically modifying passwords to
increase security, finding that users would create weaker pre-
improvement passwords to compensate [16]. In contrast, our
meter’s suggested improvements are completely optional.

Specific-Feedback Modal

For the main screen, we designed the feedback specific to a
user’s password to be both succinct and action-oriented. Al-
though the rationale for these specific suggestions might be



Ways to Improve Your Password

Potat0es5678|

Show Password & Detailed Feedback @

A better choice: Potoatleqhs5678

Your password could be better.

M Don't use simple transformations of words (potatoes — PotatOes)

M Avoid numerical patterns like 5678

M Capitalize a letter in the middle, rather than the first character

How to make strong passwords

@ Keep Changes

Figure 3: The specific-feedback modal (password shown).

obvious to many users, we expected it would not be obvious
to all users based on prior work on password perceptions [41].
To give more detailed explanations of why our specific sug-
gestions would improve a password, we created a specific-
feedback modal, and we show an example of it for the pass-
word “PotatOes5678” in Figure 3. When a user clicks “(Why?)”
next to password-specific feedback, the modal appears.

The specific-feedback modal’s main bullet points mirror those
from the main screen. Below each main point, however, the
specific-feedback modal also explains why this action would
improve the password. Our explanations take two primary
forms. In the first form, we explain how attackers could ex-
ploit particular characteristics we observe in the candidate
password. For instance, we explain that attackers try simple
transformations of dictionary words when we observe a pass-
word that contains such simple transformations. In the second
form, we provide statistics about how common different char-
acteristics are (e.g., 30% of passwords that contain a capital
letter have only the first character of the password capitalized).

Generic-Advice Modal

It is not always possible to generate data-driven feedback. For
instance, until a user has typed more than a few characters
into the password field, the strength of the candidate password
cannot yet be definitively determined. In addition, extremely
predictable candidate passwords (e.g., “password” or “mon-
key1”) require that users completely rethink their strategy. We
thus created a generic-advice modal that recommends abstract
strategies for creating passwords. Users access this modal
by clicking “how to make strong passwords” or by clicking
“(Why?)” next to suggestions against password reuse. The
first of four points we make on the generic-advice modal ad-
vises against reusing a password across accounts. We chose
to make this the first point because password reuse is very
common [9, 14, 15,38], yet a major threat to security.

We recommend constructive, action-oriented strategies as our
second and third points. Reflecting research that showed that

passwords balancing length and character complexity were
often strong [34] and because attackers can often brute-force
passwords up to at least 9 characters in an offline attack [19,
39], our second point recommends using at least 12 characters
in the password. To help inspire users who are unfamiliar with
how to make a 12+ character password in unfamiliar ways,
we use the third point to propose a way of doing so based
on Schneier’s method to use mnemonics or fragments from a
unique sentence as the basis for their password [33].

METHODOLOGY

We recruited participants from Amazon’s Mechanical Turk
crowdsourcing service for a study on passwords. We required
that participants be age 18+ and be located in the United States.
In addition, because we had only verified that the meter worked
correctly on Firefox, Chrome/Chromium, Safari, and Opera,
we required they use one of those browsers.

In order to measure both password creation and password re-
call, the study comprised two parts. The first part of the study,
which we term Part 1, included a password creation task, a
survey, and a password recall task. We assigned participants
round-robin to a condition specifying the meter variant they
would see when creating a password. After studying 18 con-
ditions in our first experiment, we were left with lingering
questions. We therefore ran a second experiment that added 8
new conditions and repeated 4 existing conditions.

The second part of the study, which we term Part 2, took
place at least 48 hours after the first part of the study and
included a password recall task and a survey. We compensated
participants $0.55 for completing Part 1 and $0.70 for Part 2.

Part 1

Following the consent process, we instructed participants that
they would be creating a password. We asked that they role
play and imagine that they were creating this password for
“an account they care a lot about, such as their primary email
account.” We informed participants they would be invited back
in a few days to recall the password and asked them to “take
the steps you would normally take to create and remember
your important passwords, and protect this password as you
normally would protect your important passwords.”

The participant then created a username and a password. While
doing so, he or she saw the password-strength meter (or lack
thereof) dictated by his or her assigned condition, described
below. Participants then answered a survey about how they
created that password. We first asked participants to respond
on a 5-point scale (“strongly disagree,” “disagree,” “neutral,”
“agree,” “strongly agree”) to statements about whether creating
a password was “annoying,” “fun,” or “difficult.” We also
asked whether they reused a previous password, modified a
previous password, or created an entirely new password.

The next three parts of the survey asked about the meter’s
colored bar, text feedback, and suggested improvements. At
the top of each page, we showed a text explanation and visual
example of the feature in question. Participants in conditions
that lacked one or more of these features were not asked ques-
tions about that feature. For the first two features, we asked



participants to rate on a five-point scale whether that feature
“helped me create a strong password,” “was not informative,”
and caused them to create “a different password than [they]
would have otherwise.” We also asked about the importance
participants place on the meter giving their password a high
score, their perception of the accuracy of the strength rating,
and whether they learned anything new from the feedback.

After the participant completed the survey, we brought him or
her to a login page and auto-filled his or her username. The
participant then attempted to re-enter his or her password. We
refer to this final step as Part 1 recall. After five incorrect
attempts, we let the participant proceed.

Part 2

After 48 hours, we automatically emailed participants to re-
turn and re-enter their password. We term this step Part 2
recall, and it was identical to Part 1 recall. We then directed
participants to a survey about how they tried to remember their
password. In particular, we first asked how they entered their
password on the previous screen. We gave multiple choice
options encompassing automatic entry by a password manager
or browser, typing the password in entirely from memory, and
looking a password up either on paper or electronically.

Conditions

In Experiment 1, we assigned participants round-robin to one
of 18 different conditions that differed across three dimen-
sions in a full-factorial design. We refer to our conditions
using three-part names reflecting the dimensions: 1) password-
composition policy; 2) type of feedback; and 3) stringency.

Dimension 1: Password-Composition Policy

We expected a meter to have a different impact of password
security and usability if used in association with a minimal
or a more complex password-composition policy. We tested
the following two policies, which respectively represent a
widespread, lax policy and a more complex policy.

e Iclass8 (1c8) requires that passwords contain 8 or more
characters, and also that they not be (case-sensitive) one of
the 96,480 such passwords that appeared four or more times
in the Xato corpus of 10 million passwords [6].

o 3class12 (3c12) requires that passwords contain 12 or more
characters from at least 3 different character classes (lower-
case letters, uppercase letters, digits, and symbols). It also
requires that the password not be (case-sensitive) one of the
96,926 such passwords that appeared in the Xato corpus [6].

Dimension 2: Type of Feedback

Our second dimension varies the type of feedback we provide
to participants about their password. While the first setting
represents our standard meter, we removed features for each
of the other settings to test the impact of those features.

e Standard (Std) includes all previously described features.

e No Suggested Improvement (StdNS) is the same as Stan-
dard, except it never displays a suggested improvement.

o Public (Pub) is the same as standard, except we never show
sensitive text feedback (i.e., we never show a suggested

improvement and always show the less informative “public”
feedback normally shown when the password is hidden).

e Bar Only (Bar) shows a colored bar displaying password
strength, but we do not provide any type of text feedback
other than which composition requirements have been met.

e No Feedback (None) gives no feedback whatsoever.

Dimension 3: Scoring Stringency

Ur et al. found the stringency of a meter’s scoring has a sig-
nificant impact on password strength [42]. We thus tested two
scoring stringencies. These stringencies changed the mapping
between the estimated number of guesses the password would
resist and how much of the colored bar was filled.

e Medium (M) One-third of the bar full represents 100 esti-
mated guesses and two-thirds full represents 102,

e High (H) One-third of the bar full represents 108 estimated
guesses and two-thirds full represents 10'.

Additional Conditions for Experiment 2
Experiment 2 added the following two settings for our feed-
back and stringency dimensions, respectively:

e Feedback: Standard, No Bar (NoBar) The Standard meter
without any colored bar. The text feedback still depends on
the password’s score, so stringency still matters.

e Stringency: Low (L) One-third of the bar full represents
10* estimated guesses and two-thirds full represents 103

To investigate these two settings we introduced eight new con-
ditions and re-ran the four existing standard feedback medium
and high conditions in a full-factorial design.

Analysis

We collected numerous types of data. Our main security metric
was the guessability of each participant’s password, as calcu-
lated by CMU’s Password Guessability Service [7], which
models four types of guessing attacks and which they found
to be a conservative proxy for an expert attacker [43]. Our
usability measurements encompassed both quantitative and
qualitative data. We recorded participants’ keystrokes, en-
abling us to analyze metrics like password creation time. To
understand the use of different features, we instrumented all el-
ements of the user interface to record when they were clicked.

For both Part 1 and Part 2, we measured whether participants
successfully recalled their password. For participants who did
successfully recall their password, we also measured how long
it took them, as well as how many attempts were required.
Because not all participants returned for Part 2, we also mea-
sured what proportion of participants did, hypothesizing that
participants who did not remember their password might be
less likely to return. To only study attempts at recalling a pass-
word from memory, we analyzed password recall only among
participants who said they typed their password in entirely
from memory, said they did not reuse their study password,
and whose keystrokes did not show evidence of copy-pasting.

We augmented our objective measurements with analyses of
responses to multiple-choice questions and qualitative analysis
of free-text responses. These optional free-text responses



solicited participants’ thoughts about the interface elements,
as well as why they did (or did not) find them useful.

Our primary goal was understanding how varying the three
meter-design dimensions impacted our quantitative metrics.
Because we had multiple independent variables, each reflect-
ing one design dimension, we performed regressions. We
ran a linear regression for continuous data (e.g., the time to
create a password), a logistic regression for binary data (e.g.,
whether or not they clicked on a given Ul element), an ordinal
regression for ordinal data (e.g., Likert-scale responses), and
a multinomial logistic regression for categorical data with no
clear ordering (e.g., how they entered their password).

For our security analyses, we performed a Cox Proportional-
Hazards Regression, which is borrowed from the literature
on survival analysis and has been used to compare password
guessability [31]. Because we know the starting point of guess-
ing but not the endpoint, we use a right-censored model [17].
In a traditional clinical model using survival analysis, each
data point is marked as “alive” or “deceased,” along with the
time of the observation. Our analogues for passwords are “not
guessed” and “guessed,” along with the number of guesses at
which the password was guessed, or the guessing cutoff.

We always first fit a model with the three design dimensions
(composition policy, feedback, and stringency) each treated as
ordinal variables fit linearly, as well as interaction terms for
each pair of dimensions. To build a parsimonious model, we
removed any interaction terms that were not significant, yet
always kept all three main effects, and re-ran the model.

We corrected for multiple testing using the Benjamini-
Hochberg (BH) procedure [3]. We chose this approach, which
is more powerful and less conservative than methods like Holm
Correction, because we performed an exploratory study with a
large number of variables. We corrected all p-values for each
experiment as a group. We use o = 0.05.

Note that we analyzed Experiments 1 and 2 separately. Thus,
we do not compare conditions between experiments. How-
ever, in the graphs and tables that follow we have combined
our reporting of these two experiments for brevity. We only
report “NoBar” and low-stringency data from Experiment 2 in
these tables and graphs. For conditions that were part of both
experiments, we only report the results from Experiment 1.

Limitations

We based our study’s design on one researchers have used
previously to investigate various aspects of passwords [21, 28,
34,42]. However, the password participants created did not
protect anything of value. Beyond our request that they do
s0, participants did not need to exhibit their normal behavior.
Mazurek et al. [31] and Fahl et al. [13] examined the ecological
validity of this protocol, finding it to be a reasonable, albeit
imperfect, proxy for high-value passwords for real accounts.

That said, no controlled experiment can capture every aspect
of password creation. We did not control the device [48, 52]
on which participants created a password, nor could we con-
trol how participants chose to remember their password. We
tested password recall at only two points in time. Our limited
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Figure 4: Guessability of medium-stringency passwords cre-
ated without any feedback (“None”), with only a colored bar
(“Bar”), and with both a colored bar and text feedback (“Std”).

evaluation of memorability does not capture many aspects of
the password ecosystem. Some passwords are entered very
frequently, while others are entered very rarely, and the me-
ter’s impact on memorability (or lack thereof) may differ in
these scenarios. Furthermore, while we studied our meter’s
impact on the creation of a single password, users typically
have a large number of passwords, potentially impacting multi-
account intereference effects. If a future study were to find
that our meter increases multi-account interference, the meter
might be best deployed only for high-value account.

Our study’s ecological validity is also limited in some aspects.
We did not test habituation effects, either to the use of a par-
ticular password or to the novel password-meter features we
tested. Our password meter might cause long-term changes in
how users create passwords in the wild, and only an extended
field study could capture these changes. On the one hand,
lessons users learn from our meter about password creation
could help them create stronger passwords for accounts that
do not provide feedback. On the other hand, potential usability
drawbacks might become more pronounced or have a large
effect over time in the wild. In addition, password creation was
the primary task in our study. Our meter might have a different
impact in the more typical scenario of password creation as a
user’s secondary task, which would lower motivation.

PARTICIPANTS

We had 4,509 participants (2,717 in Experiment 1 and 1,792 in
Experiment 2), and 84.1% of them returned for Part 2. Among
our participants, 52% identified as female, 47% identified as
male, and the remaining 1% identified as another gender or
preferred not to answer. Participants’ ages ranged from 18
to 80 years old, with a median of 32 (mean 34.7). We asked
whether participants are “majoring in or...have a degree or
job in computer science, computer engineering, information
technology, or a related field,” and 82% responded “no.” De-
mographics did not vary significantly by condition.
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Figure 5: Guessability of 1class8, medium-stringency pass-
words created with different levels of feedback. This graph
shows data from Experiment 1. However, we have added
1c8-NoBar-M from Experiment 2 for illustrative purposes.

SECURITY IMPACT

Increasing levels of data-driven feedback, even beyond just
a colored bar, led users to create stronger 1class8 passwords.
That is, detailed text feedback led to even more secure pass-
words than just the colored bar alone. The 3class12 policy also
led to stronger passwords, but varying the scoring stringency
had only a small impact.

Impact of Composition Policy

We first ran a Cox regression with all three dimensions and
their pairwise interactions as independent variables, and the
password’s survival term as the dependent variable. For Ex-
periment 1, we found significant main effects for both the
policy and type of feedback, but we also observed a significant
interaction effect between the policy and type of feedback. For
increased intelligibility, we subsequently ran separate regres-
sions for 1class8 and 3class12 passwords. As the 3class12
policy requires longer passwords than 1class8, participants un-
surprisingly created 3class12 passwords that were significantly
longer (p < .001) and significantly more secure (p < .001)
than 1class8 passwords.

Impact of the Amount of Feedback

For 1class8 passwords, we found that increasing levels of data-
driven feedback led participants to create significantly stronger
passwords (p < .001). Relative to having no feedback, the full
suite of data-driven feedback led to 44% stronger passwords.
As shown in Figure 4, the colored bar on its own led partici-
pants to create stronger passwords than having no feedback,
echoing prior work [42]. The detailed text feedback we intro-
duce in this work led to even stronger passwords than just the
bar. Increasing the amount of feedback also led participants to
create longer passwords (p < .001). For example, the median
length of 1c8-None passwords was 10 characters, whereas the
median for 1¢8-Std-M was 12 characters.

Notably, the security of 1class8 passwords created with our
standard meter (including all text feedback) was more similar

3c12-Std-L

3c12-Std-M

20% 3c12-Std-H

10% -

Percent guessed

0%1

10" 10® 10° 107 10° 10" 10" 10"
Guesses

Figure 6: Guessability of 3class12 passwords by stringency.

to the security of 3class12 passwords created without feedback
than to 1class8 passwords created without feedback (Figure 4).

To test the impact of showing more detailed text and the sug-
gested improvement, we compared our standard meter (“Std”)
to a meter that is otherwise identical to our standard meter,
yet never offers a suggested improvement (“StdNS”), the vari-
ant that never shows sensitive feedback and never shows a
suggested improvement (‘“Pub’), and control variants where
we show only the colored bar without text feedback (“Bar”)
and no feedback (“None”). Figure 5 details the comparative
security impact of all six feedback levels. Whereas suggested
improvements had minimal impact, having the option to show
potentially sensitive feedback provided some security benefits
over the public (“Pub”) variant. When we investigated remov-
ing the colored bar from the standard meter, but leaving the
text feedback, we found that removing the colored bar did not
significantly impact password strength.

For 3class12 passwords, however, the level of feedback did
not significantly impact password strength. We hypothesize
that either we are observing a ceiling effect, in which the
3class12 policy by itself led participants to make sufficiently
strong passwords, or that the text feedback does not provide
sufficiently useful recommendations for a 3class12 policy.

Impact of Stringency

Although prior work on password meters found that increased
scoring stringency led to stronger passwords [42], we found
that varying between medium and high stringency did not sig-
nificantly impact security. Because both our medium and high
stringency levels were more stringent than most real-world
password meters, we investigated an additional low stringency
setting in Experiment 2. With these three levels, we found that
increasing levels of stringency did lead to stronger passwords,
but only for 3class12 passwords (p = .043). Figure 6 shows
the impact of varying the 3class12 stringency. In all cases,
however, increasing the stringency led participants to create
longer passwords (p < .001). For instance, the median high-
stringency 1class8 password was one character longer than
the median low-stringency 1class8 password. For 3class12
passwords, high-stringency passwords were two characters



longer. Note that the prior work [42] tested a meter that used
only basic heuristics (Iength and character classes) to score
passwords, with a particular emphasis on length. As a result,
participants could fill more of the stringent meters simply by
making their password longer. In contrast, our meter scores
passwords far more rigorously, which we hypothesize might
account for this difference.

USABILITY IMPACT

We first discuss how the meter’s design dimensions impacted
our usability metrics. All dimensions impacted a number of
our timing and participant-sentiment metrics, but they mostly
did not impact password memorability. Notably, although
increasing levels of data-driven feedback led to stronger pass-
words, we did not observe any significant impact on memo-
rability. Afterwards, we discuss participants’ usage of, and
reaction to, the different aspects of text feedback and the col-
ored bar. We tested many metrics; Table 1 summarizes our key
findings. Throughout this section, if we do not explicitly call
out a metric as being impacted by one or more dimensions, we
did not observe a significant difference.

Overall, 56.5% of participants said they typed their password
in entirely from memory. Other participants looked it up on
paper (14.6%) or on an electronic source (12.8%), such as
their computer or phone. An additional 11.2% of participants
said their password was entered automatically for them by
a password manager or browser, while 4.9% entered their
password in another way (e.g., looking up hints).

Considering password reuse and copy-pasting, 50.6% of par-
ticipants tried to recall a novel study password from memory,
and these are the participants for whom we examine password
recall. Overall, 98.4% of these participants successfully re-
called their password during Part 1, and the majority did so on
their first attempt. In total, 89.3% of participants returned for
Part 2 of the study, and 78.2% of returnees who tried to recall
a novel study password from memory successfully recalled
their password, again primarily on their first attempt.

Impact of Composition Policy

Moving from a 1class8 to a 3class12 policy increased the
time it took to create the password, measured from the first
keystroke to the last keystroke in the password box (p = .014).
It also impacted participant sentiment. The 3class12 policy
led participants to report password creation as significantly
more annoying and difficult (both p < .001).

Passwords created under a 3class12 policy were more secure
than those created under 1class8, but these security gains were
somewhat futile because participants were less likely to re-
member their password. Compared to 1class8, participants
who made 3class12 passwords were less likely to successfully
recall their password during Part 2 (p = .025). Across condi-
tions, 81.3% of 1class8 participants recalled their password
during Part 2, whereas 75.0% of 3class12 participants did. The
policy did not significantly impact any other recall metrics.

Impact of the Amount of Feedback
Increasing the amount of feedback increased the time it took
to create the password (p = .011). We observed an interaction

Table 1: A summary of how moving from a 1class8 to 3class12
policy, increasing the amount of feedback, or increasing the
scoring stringency impacted key metrics.

Metric ‘ Policy Feedback Stringency

Security

Passwords harder to guess v Iclass8 only 3class12 only

Password creation

Longer passwords v
More time to create v
More deletions

More likely to show on screen v
Less likely to show on screen
More likely to show suggested
improvement

NSNS
ANEER NN S

Sentiment about creation
More annoying

More difficult

Less fun -

AN
<
NENN

Password recall

Less memorable in Part 1
Part 1 recall took longer v
Less memorable in Part 2 v

Part 2 recall took longer
Required more attempts
Participant less likely to try v
recalling from memory

between the amount of feedback and the stringency; increasing
the amount of feedback in high-stringency conditions led to a
greater time increase (p = .048).

To understand how participants change their password during
creation, we examined the number of deletions, which we de-
fined as a participant removing characters from their password
that they added in a prior keystroke. Increasing amounts of
feedback led to significantly more deletions (p < .001), im-
plying that the feedback causes participants to change their
password-creation decisions. For instance, the median number
of deletions for 1c8-None was zero, while the median number
for 1c8-Std-H was 9. We observed two significant interaction
effects. For high-stringency conditions, an increased amount
of feedback led to even more deletions (p = .002).

Increasing the amount of feedback negatively affected partici-
pant sentiment. It led participants to report password creation
as more annoying (both p < .001) and more difficult (p < .001
and p = .003, respectively). It also led participants to report
password creation as less fun (p = .025). For each sentiment,
roughly 10%—15% of the participants in that condition moved
from agreement to disagreement, or vice versa.

Even though increasing the amount of feedback led to signifi-
cantly more secure passwords, it did not significantly impact
any of our recall metrics.

Impact of Stringency

Although increasing the scoring stringency led participants to
create longer passwords, varying between medium and high
stringency did not cause them to take significantly longer to
do so, nor did it impact participant sentiment about password
creation. When we added an additional low stringency level
in Experiment 2, however, participants who saw increased



stringency took longer to create a password (p < .001) and
deleted more characters during creation (p < .001). They also
took longer to recall their password during Part 1 (p = 0.010)
and were less likely to try recalling their password solely from
memory (p = .002), though stringency did not significantly
impact other recall metrics.

Increasing the stringency greatly impacted participant senti-
ment. It led participants to perceive password creation as more
annoying, more difficult, and less fun (p < .001, p < .001,
p = .010, respectively). It also caused participants to be
more likely to say the bar helped them create a stronger pass-
word (p = .027), less likely to believe the bar was accurate
(p <.001), and less likely to find it important that the bar gives
them a high score (p = .006). Increasing levels of stringency
made participants more likely to say the text feedback led
them to create a different password than they would have oth-
erwise (p = .010), but also less likely to believe they learned
something new from the text feedback (p < .001).

Text Feedback

Participants reacted positively to the text feedback. Most
participants (61.7%) agreed or strongly agreed that the text
feedback made their password stronger. Similarly, 76.9%
disagreed or strongly disagreed that the feedback was not
informative, and 48.7% agreed or strongly agreed that they
created a different password than they would have otherwise
because of the text feedback. Higher stringency participants
were more likely to say they created a different password
(p = .022), but no other dimension significantly impacted any
other proportion.

Although most participants (68.5%) selected “no” when we
asked if they learned “something new about passwords (your
password, or passwords in general) from the text feedback,”
31.5% selected “yes.” Participants commonly said they
learned about moving capital letters, digits, and symbols to
less predictable locations from the meter (e.g., “I didn’t know
it was helpful to capitalize an internal letter.”). Many partici-
pants also noted that the meter’s requests not to use dictionary
entries or words from Wikipedia in their password taught them
something new. One of these participants noted learning “that
hackers use Wikipedia.” Requests to include symbols also
resonated. As one participant wrote, “I didn’t know previously
that you could input symbols into your passwords.”

Participants also took the text feedback as an opportunity for
reflection on their password-creation strategies. One partici-
pant learned “that I tend to use full words which isn’t good,”
while another learned “don’t base the password off the user-
name.” Participants exercised many of the features of our
feedback, including participants who “learned to not use L33T
to create a password (exchanging letters for predictable num-
bers).” Some participants also learned about password reuse,
notably that “people steal your passwords in data breaches and
they try to use it to access other accounts.”

Suggested Improvement

When participants in applicable conditions showed their pass-
word or clicked “see your password with our improvements,”
they would see the suggested improvement. Across conditions,

37.8% of participants clicked the “show password” checkbox.
Participants who made a 3class12 password, saw a higher-
stringency meter, or who saw less feedback were more likely
to show their password (p < .001, p = .006, and p = .022,
respectively). While most participants who saw a suggested
improvement did so because they checked “show password &
detailed explanations,” 8.7% of participants in applicable con-
ditions specifically clicked the “see your password with our
improvements” button. Higher stringency made participants
more likely to show the suggested improvement (p = .003).

When we asked in the survey whether participants in those
conditions had seen a suggested improvement, 34.8% selected
“yes,” 55.6% selected “no,” and 9.6% chose the “I don’t re-
member” option. Nearly all participants who said they did
not see a suggested improvement indeed were never shown
a suggested improvement because they never showed their
password or clicked “see your password with our improve-
ments.” Among participants who said they saw a suggested
improvement, 81.5% said that suggested improvements were
useful, while 18.5% said they were not. A slight majority
(50.9%) of these participants agreed or strongly agreed that
the suggested improvement helped them make a stronger pass-
word. This help, however, did not often come in the form of
adopting the precise suggestion offered. In each condition that
offered a suggested improvement, at most 7% of participants
used one of the meter’s suggested passwords verbatim. Our
qualitative feedback indicated that the suggested improvement
often sparked other ideas for modifying the password.

We asked participants who found the suggested improvements
useful to explain why. They wrote that seeing a suggested
improvement “helps you modify what you already have instead
of having to think of something absolutely new” and “breaks
you out of patterns you might have when creating passwords.”
Participants particularly liked that the suggested improvement
was a modification of their password, rather than an entirely
new one, because it “may help spark ideas about tweaking
the password versus having to start from scratch.” As one
participant summmarized, “It actually offers some help instead
of just shutting you down by essentially saying ‘no, not good
enough, come up with something else.” It’s very helpful.”

Participants who did not find it useful expressed two streams of
reasoning. The first concerned memorability. One participant
explained, “I’m more likely to forget a password if I don’t use
familiar techniques.” while another wrote, “I already have a
certain format in mind when I create my password to help me
memorize it and I don’t like to stray from that.” The second
stream concerned the trustworthiness of the “algorithm that
creates those suggestions.” As one participant wrote, “I don’t
trust it. I dont want a computer knowing my passwords.”

Modal Windows

Clicking a “(why?)” link next to any of the up to three pieces
of feedback in any condition with text feedback opened the
specific-advice modal. Few participants in our experiment
clicked on “(why?)” links, and therefore few participants saw
the specific-advice modal. Only 1.0% of participants across
all conditions clicked on one of these links.



In contrast, 8.4% of participants looked at the generic-advice
modal, though 3class12 participants were less likely to do
so (p = .025). Participants could arrive at the generic-advice
modal by clicking “how to make strong passwords” or clicking
“(why?)” next to admonitions against password reuse. Partici-
pants arrived at it about evenly through these two methods.

Colored Bar

We also analyzed participants’ reactions to the colored bar. All
three dimensions impacted how much of the colored bar par-
ticipants filled. Participants who were assigned the 3class12
policy or saw more feedback filled more of the bar, while
participants whose passwords were rated more stringently
unsurprisingly filled less (all p < .001). Few participants com-
pletely filled the bar (estimated guess numbers 10'® and 10%*
in medium and high stringency, respectively). The median
participant often filled half to two-thirds of the bar, depending
on the stringency. For instance, for 1¢8-Std-M, only 16.5%
completely filled the bar, but 51.7% filled at least two-thirds,
and 73.1% filled at least half.

Overall, participants found the colored bar useful. The major-
ity of participants (64.0%) agreed or strongly agreed that the
colored bar helped them create a stronger password, 42.8%
agreed or strongly agreed that the bar led them to make a
different password than they would have otherwise, and 77.2%
disagreed or strongly disagreed with the statement that the
colored bar was not informative. Participants also looked to
the colored bar for validation; 50.9% of participants agreed
or strongly agreed that it is important that the colored bar
gives their password a high score. High-stringency partici-
pants were less likely to care about receiving a high score
(p = .025). With increasing amounts of feedback, partici-
pants were more likely to care about receiving a high score
(p = .002), more likely to say that the bar helped them create
a stronger password (p < .001) that was different than they
would have otherwise (p < .001). They were also less likely
to believe the bar was not informative (p = .024).

Participants mostly felt the colored bar accurately scored their
password. Across conditions, 68.2% of participants said they
felt the bar scored their password’s strength accurately, while
23.6% felt the bar gave their password a lower score than it
deserved. An additional 4.2% of participants felt the bar gave
their password a higher score than it deserved, while 4.0% did
not remember how the bar scored their password. Participants
were less likely to believe the rating was accurate in the more
stringent conditions (p < .001).

We also tested removing the colored bar while keeping all text
feedback. Removing the colored bar caused participants to be
more likely to return for Part 2 of the study (p = .020), but did
not impact any other objective security or usability metrics.
Removing the colored bar did impact participant sentiment,
however. Participants who did not see a bar found password
creation more annoying and difficult (both p < .001).

DISCUSSION AND DESIGN RECOMMENDATIONS

In this paper, we described our design and evaluation of a
password meter that provides detailed, data-driven feedback.
Using a combination of artificial neural networks and nearly

two dozen advanced heuristics to score passwords, as well as
giving users detailed text explanations of what parts of their
particular password is predictable, our meter gives both more
accurate and more actionable information to users.

We found that our password-strength meter made 1class8 pass-
words harder to guess without significantly impacting memo-
rability. Text feedback led to more secure 1class8 passwords
than a colored bar alone, whereas colored bars alone are the
type of meter widely deployed today [10]. Notably, leaving
the detailed text feedback but removing the colored bar did
not significantly impact the security of the passwords partic-
ipants created. Combined with our finding that most people
do not feel compelled to fill the bar, this suggests that the
visual metaphor has only marginal impact when detailed text
feedback is also present. As a result, we highly recommend
the use of a meter that provides detailed text feedback for
common password-composition policies like 1class8. From
our results, we recommend that the meter offer potentially
sensitive feedback when the user shows his or her password on
screen. While much of this text feedback might be redundant
for power users, they are free to ignore it.

The suggested improvement did seem to help some partici-
pants, but its overall effect was not strong and some partic-
ipants did not trust suggestions from a computer. While its
inclusion does not seem to hurt, we would consider it optional.
Similarly, although the generic-advice modal was visited more
than the specific-advice modal, only a fraction of participants
looked at it. Because not all users need to learn the basics
of making strong passwords [41], it is reasonable that only a
handful of users would need to engage with these features. We
thus recommend that they be included.

In contrast to prior work that found scoring stringency to be
crucial for password meters [42], we only observed a signifi-
cant security effect for 3class12 passwords, and the effect size
was small. Note that our meter used far more advanced meth-
ods to score passwords more accurately than the basic heuris-
tics tested in that prior work. Because the high-stringency
setting negatively impacted some usability metrics, we recom-
mend our medium setting.

Our recommendations differ for 3class12 passwords. The me-
ter had minimal impact on the security of 3class12 passwords.
While the meter introduced few usability disadvantages, sug-
gesting that it may not hurt to include the meter, we would not
recommend it nearly as strongly as for 1class8 passwords.

While the studies we report in this paper are a crucial first
step in pinpointing the impact of meter design dimensions
and configurations, the next step is to investigate these effects
further in a field study. Such a study could improve ecological
validity, allow for expanded testing of password memorability,
and enable comparisons with currently deployed meters.

To spur adoption of data-driven password meters, we are re-
leasing our meter’s code open-source. '

ISource code: https://github.com/cupslab/password_meter


https://github.com/cupslab/password_meter
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